If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2+7g-3g=0
We add all the numbers together, and all the variables
g^2+4g=0
a = 1; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·1·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*1}=\frac{-8}{2} =-4 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*1}=\frac{0}{2} =0 $
| 80=5p+3 | | 28x^2+28x+96=0 | | 8+8x=15x | | x+5/2=x+7 | | 5d-3d+10=41 | | -15y+47=5y-17 | | 12x^2+4x-360=0 | | X+5~2=x+7 | | 4y+19=-2y-17 | | -5(3t+1)=-20 | | 4y+19=2y-17 | | 7x-6x=5x+6 | | -2x-11=-27 | | 44=2(3x-5( | | -40x+26x=-14 | | 4w+25=-15 | | -5.x=45.5 | | -7x-49=-5x-45 | | (43-2x)=(12x+1) | | 9(x-3.3)=1.8 | | -6w-18=12 | | 9(x-3.3)=1 | | 3(t+8)=33 | | 5x+53=10x-5 | | 3m-45=50 | | 2x−4=4(x−5) | | 8g-20=3g-40 | | a÷6=5 | | −3−6(−6x−4)=−(3+5x)+6x | | 9a-10=71 | | 56=2k | | -8z-9=8z-9 |